Perkembangan Ilmu Astronomi diIdonesia

Astronomi Indonesia meliputi perkembangan ilmu astronomi di Indonesia. Seperti kebudayaan-kebudayaan lain di dunia, masyarakat asli Indonesia sudah sejak lama menaruh perhatian pada langit. Keterbatasan pengetahuan membuat kebanyakan pengamatan dilakukan untuk keperluan astrologi. Pada tingkatan praktis, pengamatan langit digunakan dalam pertanian dan pelayaran. Dalam masyarakat Jawa misalnya dikenal pranatamangsa, yaitu peramalan musim berdasarkan gejala-gejala alam, dan umumnya berhubungan dengan tata letak bintang di langit. Nama-nama asli daerah untuk penyebutan obyek-obyek astronomi juga memperkuat fakta bahwa pengamatan langit telah dilakukan oleh masyarakat tradisional sejak lama. Lintang Waluku adalah sebutan masyarakat Jawa tradisional untuk menyebut tiga bintang dalam sabuk Orion dan digunakan sebagai pertanda dimulainya masa tanam. Gubuk Penceng adalah nama lain untuk rasi Salib Selatan dan digunakan oleh para nelayan Jawa tradisional dalam menentukan arah selatan. Joko Belek adalah sebutan untuk Planet Mars, sementara lintang kemukus adalah sebutan untuk komet. Sebuah bentangan nebula raksasa dengan fitur gelap di tengahnya disebut sebagai Bimasakti. Pelaut-pelaut Belanda pertama yang mencapai Indonesia pada akhir abad-16 dan awal abad-17 adalah juga astronom-astronom ulung, seperti Pieter Dirkszoon Keyser dan Frederick de Houtman. Lebih 150 tahun kemudian setelah era penjelajahan tersebut, misionaris Belanda kelahiran Jerman yang menaruh perhatian pada bidang astronomi, Johan Maurits Mohr, mendirikan observatorium pertamanya di Batavia pada 1765. James Cook, seorang penjelajah Inggris, dan Louis Antoine de Bougainville, seorang penjelajah Perancis, bahkan pernah mengunjungi Mohr di observatoriumnya untuk mengamati transit Planet Venus pada 1769[1]. Ilmu astronomi modern makin berkembang setelah pata tahun 1928, atas kebaikan Karel Albert Rudolf Bosscha, seorang pengusaha perkebunan teh di daerah Malabar, dipasang beberapa teleskop besar di Lembang, Jawa Barat, yang menjadi cikal bakal Observatorium Bosscha, sebagaimana dikenal pada masa kini. Penelitian astronomi yang dilakukan pada masa kolonial diarahkan pada pengamatan bintang ganda visual dan survei langit di belahan selatan ekuator bumi, karena pada masa tersebut belum banyak observatorium untuk pengamatan daerah selatan ekuator. Setelah Indonesia memperoleh kemerdekaan, bukan berarti penelitian astronomi terhenti, karena penelitian astronomi masih dilakukan dan mulai adanya rintisan astronom pribumi. Untuk membuka jalan kemajuan astronomi di Indonesia, pada tahun 1959, secara resmi dibuka Pendidikan Astronomi di Institut Teknologi Bandung. Pendidikan Astronomi di Indonesia secara formal dilakukan di Departemen Astronomi, Institut Teknologi Bandung. Departemen Astronomi berada dalam lingkungan Fakultas Matematika dan Ilmu Pengetahuan Alam (FMIPA) dan secara langsung terkait dengan penelitian dan pengamatan di Observatorium Bosscha. Lembaga negara yang terlibat secara aktif dalam perkembangan astronomi di Indonesia adalah Lembaga Penerbangan dan Antariksa Nasional (LAPAN). Selain pendidikan formal, terdapat wadah informal penggemar astronomi, seperti Himpunan Astronomi Amatir Jakarta, serta tersedianya planetarium di Taman Ismail Marzuki, Jakarta yang selalu ramai dipadati pengunjung. Perkembangan astronomi di Indonesia mengalami pertumbuhan yang pesat, dan mendapat pengakuan di tingkat Internasional, seiring dengan semakin banyaknya pakar astronomi asal Indonesia yang terlibat dalam kegiatan astronomi di seluruh dunia, serta banyaknya siswa SMU yang memenangi Olimpiade Astronomi Internasional maupun Olimpiade Astronomi Asia Pasific. Demikian juga dengan adanya salah seorang putra terbaik bangsa dalam bidang astronomi di tingkat Internasional, yaitu Profesor Bambang Hidayat yang pernah menjabat sebagai vice president IAU (International Astronomical Union).
Read more

Lubang Hitam terberatdiLingkungan Kosmik

Para astronom yang dipimpin oleh Karl Gebhardt dari Universitas Texas di Austin telah mengukur lubang hitam yang paling besar dikenal di lingkungan kosmik kita dengan menggabungkan data dari teleskop raksasa di Hawaii dan teleskop yang lebih kecil di Texas. Hasilnya adalah massa 6,6 miliar untuk Suns lubang hitam di galaksi elips raksasa M87. Massa yang sangat besar ini adalah yang terbesar yang pernah diukur untuk sebuah lubang hitam dengan menggunakan teknik langsung. Mengingat ukuran masifnya, M87 adalah kandidat terbaik untuk studi masa depan untuk benar-benar "melihat" lubang hitam untuk pertama kalinya, daripada bergantung pada bukti tidak langsung keberadaan mereka seperti yang telah astronom lakukan selama beberapa dekade. Gebhardt memimpin tim peneliti menggunakan teleskop 8-meter Gemini North di Hawaii untuk menyelidiki gerakan bintang-bintang di sekitar lubang hitam di pusat galaksi M87 masif. Jeremy Murphy dari Universitas Texas menggunakan Teleskop Harlan J. Smith di Universitas McDonald Observatory di Texas Barat untuk menyelidiki luar M87, yan disebut Halo Gelap. Halo gelap merupakan wilayah yang mengelilingi galaksi dipenuhi dengan materi gelap, jenis massa yang tidak diketahui yang tidak mengeluarkan cahaya tetapi terdeteksi oleh efek gravitasi pada objek lain. "Dalam rangka untuk menjabarkan massa lubang hitam dengan meyakinkan," kata Gebhardt, "kita harus menghitung semua komponen di galaksi. Dengan demikian, studi baik dari pusat dan daerah terluar dari sebuah galaksi diperlukan untuk melihat pengaruh halo gelap, lubang hitam, dan bintang-bintang. Tetapi ketika semua komponen ini dianggap bersama-sama," Gebhardt mengatakan, hasil pada lubang hitam sudah pasti, pertemuan apa yang dia sebut "standar emas" untuk ukuran akurat sebuah lubang hitam. Gebhardt menggunakan Lapangan Hampir Inframerah Spektrografi (NIFS) pada Gemini untuk mengukur kecepatan bintang-bintang ketika mereka mengorbit lubang hitam. Penelitian ini diperbaiki dengan menggunakan Gemini dari "optik adaptif," sebuah sistem yang mengkompensasi, secara real time, untuk perubahan dalam suasana yang bisa blur detil terlihat oleh teleskop di tanah. Dengan kemampuan pengumoulan teleskop yang luas, sistem optik adaptif memperbolehkan Gebhardt dan Yosua Adams dari Universitas Texas untuk melacak bintang-bintang di jantung M87 dengan resolusi 10 kali lebih besar dari penelitian sebelumnya. Ini "hanya merupakan perbaikan besar dibandingkan bekerja sebelumnya," kata Adams. "Kemampuan kami untuk mendapatkan massa lubang hitam yang kuat untuk M87 menjadi pertanda baik bagi upaya berkelanjutan kami untuk berburu lubang hitam yang lebih besar di galaksi lebih jauh dari M87," kata Tod Lauer dari National Optical Astronomy Observatory. Mahasiswa pascasarjana TexasJeremy Murphy menggunakan alat yang berbeda untuk melacak gerakan bintang di pinggiran galaksi. Mempelajari gerakan bintang di wilayah ini jauh memberikan astronom wawasan apa yang dark matter tak terlihat di halo lakukan. Untuk pekerjaan ini, Murphy mempekerjakan alat inovatif yang disebut VIRUS-P di McDonald Observatory Telescope Harlan J. Smith. "Itu telah menjadi perjuangan besar untuk waktu yang lama, berusaha untuk mendapatkan apa yang halo gelap dilakukan di tepi galaksi, arena ketika Anda melihat ke sana, hanya adacahaya bintang yang redup," kata Gebhardt. "Ini adalah tempat data VIRUS-P masuk, karena bisa mengamati sepotong besar dari langit sekaligus." Ini berarti instrumen dapat menambahkan bersama cahaya redup dari bintang redup banyak untuk membuat satu pengamatan rinci. Instrumen semacam ini disebut "bidang spektrograf unit integral," dan VIRUS-P adalah yang terbesar di dunia. "Kemampuan VIRUS-P untuk menggali jauh ke dalam lingkaran luar M87 dan memberitahu kita bagaimana bintang-bintang bergerak dengan sangat mengesankan," kata Murphy. "Hal ini dengan cepat menjadi instrumen terkemuka untuk jenis pekerjaan ini." Gemini gabungan dan data McDonald telah memungkinkan tim untuk menentukan massa lubang hitam di M87 6,6 miliar Suns. Tapi mengukur seperti lubang hitam besar hanya satu langkah menuju tujuan yang lebih besar. "Tujuan utama saya adalah untuk memahami bagaimana bintang-bintang di galaksi terbuat sendiri dari waktu ke waktu," kata Gebhardt. "Bagaimana Anda membuat galaksi?" Tanya Gebhardt. "Kedua dataset probe memiliki rentang yang sangat besar, dalam hal apa massa dalam galaksi. Itu adalah langkah pertama untuk menjawab pertanyaan Itu. Sangat sulit untuk memahami bagaimana massa terakumulasi kecuali anda tahu persis apa distribusi massa - berapa banyak dalam lubang hitam, berapa banyak di bintang-bintang, berapa banyak dalam halo gelap ". Kesimpulan hari ini juga mengisyaratkan kemungkinan lain menggiurkan untuk masa depan - kesempatan untuk benar-benar "melihat" lubang hitam. "Tidak ada bukti langsung bahwa lubang hitam belum ada," kata Gebhardt. "... Zero, benar-benar nol bukti pengamatan. Untuk menyimpulkan lubang hitam saat ini, kita memilih 'tidak ada di atas' Opsi ini pada dasarnya karena penjelasan alternatif yang semakin banyak dikesampingkan.." Namun, ia mengatakan bahwa dalam lubang hitam M87 begitu besar bahwa astronom suatu hari nanti mungkin dapat mendeteksi "event horizon" nya - tepi sebuah lubang hitam di luar yang tidak bisa lolos. Horizon peristiwa lubang hitam M87 sekitar 3 kali lebih besar dari orbit Pluto - cukup besar untuk menelan tata surya kita. Meskipun teknologi belum ada, cakrawala peristiwa M87 ini meliputi sepetak langit cukup besar untuk dicitrakan oleh teleskop masa depan. Gebhardt mengatakan para astronom masa depan bisa menggunakan jaringan di seluruh dunia teleskop submillimeter untuk mencari bayangan cakrawala acara pada disk gas yang mengelilingi lubang hitam M87.
Read more

Jumat, 09 November 2012

Perkembangan Ilmu Astronomi diIdonesia

Diposting oleh Tasyaathira'ss di 17.41 0 komentar
Astronomi Indonesia meliputi perkembangan ilmu astronomi di Indonesia. Seperti kebudayaan-kebudayaan lain di dunia, masyarakat asli Indonesia sudah sejak lama menaruh perhatian pada langit. Keterbatasan pengetahuan membuat kebanyakan pengamatan dilakukan untuk keperluan astrologi. Pada tingkatan praktis, pengamatan langit digunakan dalam pertanian dan pelayaran. Dalam masyarakat Jawa misalnya dikenal pranatamangsa, yaitu peramalan musim berdasarkan gejala-gejala alam, dan umumnya berhubungan dengan tata letak bintang di langit. Nama-nama asli daerah untuk penyebutan obyek-obyek astronomi juga memperkuat fakta bahwa pengamatan langit telah dilakukan oleh masyarakat tradisional sejak lama. Lintang Waluku adalah sebutan masyarakat Jawa tradisional untuk menyebut tiga bintang dalam sabuk Orion dan digunakan sebagai pertanda dimulainya masa tanam. Gubuk Penceng adalah nama lain untuk rasi Salib Selatan dan digunakan oleh para nelayan Jawa tradisional dalam menentukan arah selatan. Joko Belek adalah sebutan untuk Planet Mars, sementara lintang kemukus adalah sebutan untuk komet. Sebuah bentangan nebula raksasa dengan fitur gelap di tengahnya disebut sebagai Bimasakti. Pelaut-pelaut Belanda pertama yang mencapai Indonesia pada akhir abad-16 dan awal abad-17 adalah juga astronom-astronom ulung, seperti Pieter Dirkszoon Keyser dan Frederick de Houtman. Lebih 150 tahun kemudian setelah era penjelajahan tersebut, misionaris Belanda kelahiran Jerman yang menaruh perhatian pada bidang astronomi, Johan Maurits Mohr, mendirikan observatorium pertamanya di Batavia pada 1765. James Cook, seorang penjelajah Inggris, dan Louis Antoine de Bougainville, seorang penjelajah Perancis, bahkan pernah mengunjungi Mohr di observatoriumnya untuk mengamati transit Planet Venus pada 1769[1]. Ilmu astronomi modern makin berkembang setelah pata tahun 1928, atas kebaikan Karel Albert Rudolf Bosscha, seorang pengusaha perkebunan teh di daerah Malabar, dipasang beberapa teleskop besar di Lembang, Jawa Barat, yang menjadi cikal bakal Observatorium Bosscha, sebagaimana dikenal pada masa kini. Penelitian astronomi yang dilakukan pada masa kolonial diarahkan pada pengamatan bintang ganda visual dan survei langit di belahan selatan ekuator bumi, karena pada masa tersebut belum banyak observatorium untuk pengamatan daerah selatan ekuator. Setelah Indonesia memperoleh kemerdekaan, bukan berarti penelitian astronomi terhenti, karena penelitian astronomi masih dilakukan dan mulai adanya rintisan astronom pribumi. Untuk membuka jalan kemajuan astronomi di Indonesia, pada tahun 1959, secara resmi dibuka Pendidikan Astronomi di Institut Teknologi Bandung. Pendidikan Astronomi di Indonesia secara formal dilakukan di Departemen Astronomi, Institut Teknologi Bandung. Departemen Astronomi berada dalam lingkungan Fakultas Matematika dan Ilmu Pengetahuan Alam (FMIPA) dan secara langsung terkait dengan penelitian dan pengamatan di Observatorium Bosscha. Lembaga negara yang terlibat secara aktif dalam perkembangan astronomi di Indonesia adalah Lembaga Penerbangan dan Antariksa Nasional (LAPAN). Selain pendidikan formal, terdapat wadah informal penggemar astronomi, seperti Himpunan Astronomi Amatir Jakarta, serta tersedianya planetarium di Taman Ismail Marzuki, Jakarta yang selalu ramai dipadati pengunjung. Perkembangan astronomi di Indonesia mengalami pertumbuhan yang pesat, dan mendapat pengakuan di tingkat Internasional, seiring dengan semakin banyaknya pakar astronomi asal Indonesia yang terlibat dalam kegiatan astronomi di seluruh dunia, serta banyaknya siswa SMU yang memenangi Olimpiade Astronomi Internasional maupun Olimpiade Astronomi Asia Pasific. Demikian juga dengan adanya salah seorang putra terbaik bangsa dalam bidang astronomi di tingkat Internasional, yaitu Profesor Bambang Hidayat yang pernah menjabat sebagai vice president IAU (International Astronomical Union).

Sabtu, 03 November 2012

Lubang Hitam terberatdiLingkungan Kosmik

Diposting oleh Tasyaathira'ss di 17.54 0 komentar
Para astronom yang dipimpin oleh Karl Gebhardt dari Universitas Texas di Austin telah mengukur lubang hitam yang paling besar dikenal di lingkungan kosmik kita dengan menggabungkan data dari teleskop raksasa di Hawaii dan teleskop yang lebih kecil di Texas. Hasilnya adalah massa 6,6 miliar untuk Suns lubang hitam di galaksi elips raksasa M87. Massa yang sangat besar ini adalah yang terbesar yang pernah diukur untuk sebuah lubang hitam dengan menggunakan teknik langsung. Mengingat ukuran masifnya, M87 adalah kandidat terbaik untuk studi masa depan untuk benar-benar "melihat" lubang hitam untuk pertama kalinya, daripada bergantung pada bukti tidak langsung keberadaan mereka seperti yang telah astronom lakukan selama beberapa dekade. Gebhardt memimpin tim peneliti menggunakan teleskop 8-meter Gemini North di Hawaii untuk menyelidiki gerakan bintang-bintang di sekitar lubang hitam di pusat galaksi M87 masif. Jeremy Murphy dari Universitas Texas menggunakan Teleskop Harlan J. Smith di Universitas McDonald Observatory di Texas Barat untuk menyelidiki luar M87, yan disebut Halo Gelap. Halo gelap merupakan wilayah yang mengelilingi galaksi dipenuhi dengan materi gelap, jenis massa yang tidak diketahui yang tidak mengeluarkan cahaya tetapi terdeteksi oleh efek gravitasi pada objek lain. "Dalam rangka untuk menjabarkan massa lubang hitam dengan meyakinkan," kata Gebhardt, "kita harus menghitung semua komponen di galaksi. Dengan demikian, studi baik dari pusat dan daerah terluar dari sebuah galaksi diperlukan untuk melihat pengaruh halo gelap, lubang hitam, dan bintang-bintang. Tetapi ketika semua komponen ini dianggap bersama-sama," Gebhardt mengatakan, hasil pada lubang hitam sudah pasti, pertemuan apa yang dia sebut "standar emas" untuk ukuran akurat sebuah lubang hitam. Gebhardt menggunakan Lapangan Hampir Inframerah Spektrografi (NIFS) pada Gemini untuk mengukur kecepatan bintang-bintang ketika mereka mengorbit lubang hitam. Penelitian ini diperbaiki dengan menggunakan Gemini dari "optik adaptif," sebuah sistem yang mengkompensasi, secara real time, untuk perubahan dalam suasana yang bisa blur detil terlihat oleh teleskop di tanah. Dengan kemampuan pengumoulan teleskop yang luas, sistem optik adaptif memperbolehkan Gebhardt dan Yosua Adams dari Universitas Texas untuk melacak bintang-bintang di jantung M87 dengan resolusi 10 kali lebih besar dari penelitian sebelumnya. Ini "hanya merupakan perbaikan besar dibandingkan bekerja sebelumnya," kata Adams. "Kemampuan kami untuk mendapatkan massa lubang hitam yang kuat untuk M87 menjadi pertanda baik bagi upaya berkelanjutan kami untuk berburu lubang hitam yang lebih besar di galaksi lebih jauh dari M87," kata Tod Lauer dari National Optical Astronomy Observatory. Mahasiswa pascasarjana TexasJeremy Murphy menggunakan alat yang berbeda untuk melacak gerakan bintang di pinggiran galaksi. Mempelajari gerakan bintang di wilayah ini jauh memberikan astronom wawasan apa yang dark matter tak terlihat di halo lakukan. Untuk pekerjaan ini, Murphy mempekerjakan alat inovatif yang disebut VIRUS-P di McDonald Observatory Telescope Harlan J. Smith. "Itu telah menjadi perjuangan besar untuk waktu yang lama, berusaha untuk mendapatkan apa yang halo gelap dilakukan di tepi galaksi, arena ketika Anda melihat ke sana, hanya adacahaya bintang yang redup," kata Gebhardt. "Ini adalah tempat data VIRUS-P masuk, karena bisa mengamati sepotong besar dari langit sekaligus." Ini berarti instrumen dapat menambahkan bersama cahaya redup dari bintang redup banyak untuk membuat satu pengamatan rinci. Instrumen semacam ini disebut "bidang spektrograf unit integral," dan VIRUS-P adalah yang terbesar di dunia. "Kemampuan VIRUS-P untuk menggali jauh ke dalam lingkaran luar M87 dan memberitahu kita bagaimana bintang-bintang bergerak dengan sangat mengesankan," kata Murphy. "Hal ini dengan cepat menjadi instrumen terkemuka untuk jenis pekerjaan ini." Gemini gabungan dan data McDonald telah memungkinkan tim untuk menentukan massa lubang hitam di M87 6,6 miliar Suns. Tapi mengukur seperti lubang hitam besar hanya satu langkah menuju tujuan yang lebih besar. "Tujuan utama saya adalah untuk memahami bagaimana bintang-bintang di galaksi terbuat sendiri dari waktu ke waktu," kata Gebhardt. "Bagaimana Anda membuat galaksi?" Tanya Gebhardt. "Kedua dataset probe memiliki rentang yang sangat besar, dalam hal apa massa dalam galaksi. Itu adalah langkah pertama untuk menjawab pertanyaan Itu. Sangat sulit untuk memahami bagaimana massa terakumulasi kecuali anda tahu persis apa distribusi massa - berapa banyak dalam lubang hitam, berapa banyak di bintang-bintang, berapa banyak dalam halo gelap ". Kesimpulan hari ini juga mengisyaratkan kemungkinan lain menggiurkan untuk masa depan - kesempatan untuk benar-benar "melihat" lubang hitam. "Tidak ada bukti langsung bahwa lubang hitam belum ada," kata Gebhardt. "... Zero, benar-benar nol bukti pengamatan. Untuk menyimpulkan lubang hitam saat ini, kita memilih 'tidak ada di atas' Opsi ini pada dasarnya karena penjelasan alternatif yang semakin banyak dikesampingkan.." Namun, ia mengatakan bahwa dalam lubang hitam M87 begitu besar bahwa astronom suatu hari nanti mungkin dapat mendeteksi "event horizon" nya - tepi sebuah lubang hitam di luar yang tidak bisa lolos. Horizon peristiwa lubang hitam M87 sekitar 3 kali lebih besar dari orbit Pluto - cukup besar untuk menelan tata surya kita. Meskipun teknologi belum ada, cakrawala peristiwa M87 ini meliputi sepetak langit cukup besar untuk dicitrakan oleh teleskop masa depan. Gebhardt mengatakan para astronom masa depan bisa menggunakan jaringan di seluruh dunia teleskop submillimeter untuk mencari bayangan cakrawala acara pada disk gas yang mengelilingi lubang hitam M87.
 
TASYAATHIRA's Copyright © 2011 Design by Ipietoon Blogger Template and web hosting